n-Pair Trident Scattering Process
In this file, we set up an n-pair trident scattering process. A trident process looks like $k e^- \to e^- (e^- e^+)^n$.
You can download this file as a jupyter notebook.
using QEDFeynmanDiagrams
We need QEDcore of the QEDjl-project for base functionality and a process type, for which we can use the Mocks
submodule from QEDbase for this tutorial. Downstream, a ScatteringProcess
from QEDprocesses.jl could be used, for example.
using QEDcore
using QEDbase.Mocks
Let's decide how many pairs our trident should produce:
n = 2;
Now we setup the scattering process accordingly. We only consider a single spin/polarization combination here. For an example with many spin and polarization combinations, refer to the n-photon Compton example
proc = QEDbase.Mocks.MockProcessSP(
(Electron(), Photon()), # incoming particles
(Electron(), ntuple(_ -> Electron(), n)..., ntuple(_ -> Positron(), n)...), # outgoing particles
(SpinUp(), PolX()), # incoming particle spin/pols
(SpinUp(), ntuple(_ -> SpinUp(), 2 * n)...), # outgoing particle spin/pols
)
QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))
The number_of_diagrams
function returns how many valid Feynman diagrams there are for a given process.
number_of_diagrams(proc)
252
Next, we can generate the DAG representing the computation for our scattering process' squared matrix element. This uses ComputableDAGs.jl
.
dag = graph(proc)
Graph:
Nodes: Total: 943, QEDFeynmanDiagrams.ComputeTask_Pair: 60, QEDFeynmanDiagrams.ComputeTask_BaseState: 7,
QEDFeynmanDiagrams.ComputeTask_SpinPolCumulation: 1, QEDFeynmanDiagrams.ComputeTask_Propagator: 60, DataTask: 505,
QEDFeynmanDiagrams.ComputeTask_PairNegated: 9, QEDFeynmanDiagrams.ComputeTask_TripleNegated: 150, QEDFeynmanDiagrams.ComputeTask_PropagatePairs: 60,
QEDFeynmanDiagrams.ComputeTask_CollectPairs: 60, QEDFeynmanDiagrams.ComputeTask_CollectTriples: 1, QEDFeynmanDiagrams.ComputeTask_Triple: 30
Edges: 1553
Total Compute Effort: 0.0
Total Data Transfer: 0.0
Total Compute Intensity: 0.0
To continue, we will need ComputableDAGs.jl
. Since ComputableDAGs.jl
uses RuntimeGeneratedFunction
s as the return type of ComputableDAGs.get_compute_function
, we need to initialize it in our current module.
using ComputableDAGs
using RuntimeGeneratedFunctions
RuntimeGeneratedFunctions.init(@__MODULE__)
Now we need an input for the function, which is a QEDcore.PhaseSpacePoint
. For now, we generate random momenta for every particle. In the future, QEDevents will be able to generate physical PhaseSpacePoint
s.
psp = PhaseSpacePoint(
proc,
MockModel(),
FlatPhaseSpaceLayout(TwoBodyRestSystem()),
tuple((rand(SFourMomentum) for _ in 1:number_incoming_particles(proc))...),
tuple((rand(SFourMomentum) for _ in 1:number_outgoing_particles(proc))...),
)
PhaseSpacePoint:
process: QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))
model: mock model
phase space layout: FlatPhaseSpaceLayout{TwoBodyTargetSystem{Energy{2}}}(TwoBodyTargetSystem{Energy{2}}(Energy{2}()))
incoming particles:
-> incoming electron: [0.889885967374767, 0.7146083470091047, 0.3118198268944159, 0.6300075046341156]
-> incoming photon: [0.004460596024637997, 0.9592628771528654, 0.09347519967629536, 0.13461144493888721]
outgoing particles:
-> outgoing electron: [0.03334292571676678, 0.22778306403086812, 0.2151782025115494, 0.08997890356381799]
-> outgoing electron: [0.00204232593156628, 0.08730200210381789, 0.013681964605307462, 0.7031998120666759]
-> outgoing electron: [0.3597173549181092, 0.8058116217905882, 0.4084957521877135, 0.661622674503487]
-> outgoing positron: [0.7393014125724023, 0.28162302337975775, 0.4510910215969175, 0.6297054396315858]
-> outgoing positron: [0.42333293511317915, 0.9792108559373601, 0.5439388426171936, 0.16987140644018894]
With the DAG, the process, RuntimeGeneratedFunctions
initialized, and an input type to use we can now generate the actual computable function:
func = get_compute_function(
dag, proc, cpu_st(), @__MODULE__; concrete_input_type = typeof(psp)
);
Finally, we can test that the function actually runs and computes something by simply calling it on the PhaseSpacePoint
:
func(psp)
0.0075088249397024355
We can benchmark the execution speed too:
using BenchmarkTools
@benchmark func($psp)
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 25.407 μs … 86.101 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 25.899 μs ┊ GC (median): 0.00%
Time (mean ± σ): 27.052 μs ± 4.157 μs ┊ GC (mean ± σ): 0.00% ± 0.00%
▇█▅▃▂▁▁▁▁ ▁▁ ▂
██████████▇▇▇▇▇▆▆▇▆▆▆▆▇███▇▆▆▇▇▆▆▆▆▇▇▅▆▆▅▅▅▅▅▅▆▅▄▅▄▅▆▅▆▆▁▅▆ █
25.4 μs Histogram: log(frequency) by time 48.7 μs <
Memory estimate: 256 bytes, allocs estimate: 2.
This page was generated using Literate.jl.