n-Pair Trident Scattering Process
In this file, we set up an n-pair trident scattering process. A trident process looks like $k e^- \to e^- (e^- e^+)^n$.
You can download this file as a jupyter notebook.
using QEDFeynmanDiagramsWe need QEDcore of the QEDjl-project for base functionality and a process type, for which we can use the Mocks submodule from QEDbase for this tutorial. Downstream, a ScatteringProcess from QEDprocesses.jl could be used, for example.
using QEDcore
using QEDbase.MocksLet's decide how many pairs our trident should produce:
n = 2;Now we setup the scattering process accordingly. We only consider a single spin/polarization combination here. For an example with many spin and polarization combinations, refer to the n-photon Compton example
proc = QEDbase.Mocks.MockProcessSP(
(Electron(), Photon()), # incoming particles
(Electron(), ntuple(_ -> Electron(), n)..., ntuple(_ -> Positron(), n)...), # outgoing particles
(SpinUp(), PolX()), # incoming particle spin/pols
(SpinUp(), ntuple(_ -> SpinUp(), 2 * n)...), # outgoing particle spin/pols
)QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))The number_of_diagrams function returns how many valid Feynman diagrams there are for a given process.
number_of_diagrams(proc)252Next, we can generate the DAG representing the computation for our scattering process' squared matrix element. This uses ComputableDAGs.jl.
dag = graph(proc)Graph:
Nodes: Total: 943, QEDFeynmanDiagrams.ComputeTask_Pair: 60, ComputableDAGs.DataTask: 505,
QEDFeynmanDiagrams.ComputeTask_PropagatePairs: 60, QEDFeynmanDiagrams.ComputeTask_Propagator: 60, QEDFeynmanDiagrams.ComputeTask_BaseState: 7,
QEDFeynmanDiagrams.ComputeTask_CollectTriples: 1, QEDFeynmanDiagrams.ComputeTask_PairNegated: 9, QEDFeynmanDiagrams.ComputeTask_Triple: 30,
QEDFeynmanDiagrams.ComputeTask_SpinPolCumulation: 1, QEDFeynmanDiagrams.ComputeTask_CollectPairs: 60, QEDFeynmanDiagrams.ComputeTask_TripleNegated: 150
Edges: 1553
Total Compute Effort: 0.0
Total Data Transfer: 0.0
Total Compute Intensity: 0.0
To continue, we will need ComputableDAGs.jl.
using ComputableDAGsNow we need an input for the function, which is a QEDcore.PhaseSpacePoint. For now, we generate random momenta for every particle. In the future, QEDevents will be able to generate physical PhaseSpacePoints.
psp = PhaseSpacePoint(
proc,
MockModel(),
FlatPhaseSpaceLayout(TwoBodyRestSystem()),
tuple((rand(SFourMomentum) for _ in 1:number_incoming_particles(proc))...),
tuple((rand(SFourMomentum) for _ in 1:number_outgoing_particles(proc))...),
)PhaseSpacePoint:
process: QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))
model: mock model
phase space layout: FlatPhaseSpaceLayout{TwoBodyTargetSystem{Energy{2}}}(TwoBodyTargetSystem{Energy{2}}(Energy{2}()))
incoming particles:
-> incoming electron: [0.9491453719556939, 0.7375039907735794, 0.392701392353769, 0.5969825259688953]
-> incoming photon: [0.8683357199521979, 0.3332749222871413, 0.743797947687577, 0.8258666723879389]
outgoing particles:
-> outgoing electron: [0.8775127709148693, 0.7794144383962663, 0.594264104414048, 0.09253813858824489]
-> outgoing electron: [0.19962974221881735, 0.9788260515957011, 0.13034311490023975, 0.5893987973099242]
-> outgoing electron: [0.8200510619036495, 0.6323341879461816, 0.8660175572776856, 0.9569538768548399]
-> outgoing positron: [0.5546599200375751, 0.37007355430529354, 0.940655881717064, 0.856928350429373]
-> outgoing positron: [0.8778825922699105, 0.7429682266355705, 0.22967899519338497, 0.9655058510348267]
With the DAG, the process, and an input type to use, we can now generate the actual computable function:
func = compute_function(dag, proc, cpu_st(), @__MODULE__);Finally, we can test that the function actually runs and computes something by simply calling it on the PhaseSpacePoint:
func(psp)0.0015901127976770772We can benchmark the execution speed too:
using BenchmarkTools
@benchmark func($psp)BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
Range (min … max): 45.714 μs … 4.637 ms ┊ GC (min … max): 0.00% … 94.13%
Time (median): 48.710 μs ┊ GC (median): 0.00%
Time (mean ± σ): 54.424 μs ± 111.884 μs ┊ GC (mean ± σ): 5.48% ± 2.65%
▂▅▇██▇▆▅▄▃▂▁▁ ▁▁▂▁▁ ▂▂▂▂▃▂▂▁▁ ▁▁▁ ▂
▆███████████████▇▇▇▆▆▅▇▇█████████████████████▇▅▅▄▂▅▃▃▃▅▄▆▅▄▆ █
45.7 μs Histogram: log(frequency) by time 76.4 μs <
Memory estimate: 68.98 KiB, allocs estimate: 661.This page was generated using Literate.jl.