n-Pair Trident Scattering Process

In this file, we set up an n-pair trident scattering process. A trident process looks like $k e^- \to e^- (e^- e^+)^n$.

You can download this file as a jupyter notebook.

using QEDFeynmanDiagrams

We need QEDcore of the QEDjl-project for base functionality and a process type, for which we can use the Mocks submodule from QEDbase for this tutorial. Downstream, a ScatteringProcess from QEDprocesses.jl could be used, for example.

using QEDcore
using QEDbase.Mocks

Let's decide how many pairs our trident should produce:

n = 2;

Now we setup the scattering process accordingly. We only consider a single spin/polarization combination here. For an example with many spin and polarization combinations, refer to the n-photon Compton example

proc = QEDbase.Mocks.MockProcessSP(
    (Electron(), Photon()),                                                         # incoming particles
    (Electron(), ntuple(_ -> Electron(), n)..., ntuple(_ -> Positron(), n)...),     # outgoing particles
    (SpinUp(), PolX()),                                                             # incoming particle spin/pols
    (SpinUp(), ntuple(_ -> SpinUp(), 2 * n)...),                                    # outgoing particle spin/pols
)
QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))

The number_of_diagrams function returns how many valid Feynman diagrams there are for a given process.

number_of_diagrams(proc)
252

Next, we can generate the DAG representing the computation for our scattering process' squared matrix element. This uses ComputableDAGs.jl.

dag = graph(proc)
Graph:
  Nodes: Total: 943, QEDFeynmanDiagrams.ComputeTask_CollectTriples: 1, QEDFeynmanDiagrams.ComputeTask_Triple: 30, 
         QEDFeynmanDiagrams.ComputeTask_CollectPairs: 60, QEDFeynmanDiagrams.ComputeTask_Propagator: 60, QEDFeynmanDiagrams.ComputeTask_BaseState: 7, 
         QEDFeynmanDiagrams.ComputeTask_TripleNegated: 150, QEDFeynmanDiagrams.ComputeTask_PairNegated: 9, QEDFeynmanDiagrams.ComputeTask_Pair: 60, 
         QEDFeynmanDiagrams.ComputeTask_PropagatePairs: 60, QEDFeynmanDiagrams.ComputeTask_SpinPolCumulation: 1, DataTask: 505
  Edges: 1553
  Total Compute Effort: 0.0
  Total Data Transfer: 0.0
  Total Compute Intensity: 0.0

To continue, we will need ComputableDAGs.jl. Since ComputableDAGs.jl uses RuntimeGeneratedFunctions as the return type of ComputableDAGs.get_compute_function, we need to initialize it in our current module.

using ComputableDAGs
using RuntimeGeneratedFunctions
RuntimeGeneratedFunctions.init(@__MODULE__)

Now we need an input for the function, which is a QEDcore.PhaseSpacePoint. For now, we generate random momenta for every particle. In the future, QEDevents will be able to generate physical PhaseSpacePoints.

psp = PhaseSpacePoint(
    proc,
    MockModel(),
    FlatPhaseSpaceLayout(TwoBodyRestSystem()),
    tuple((rand(SFourMomentum) for _ in 1:number_incoming_particles(proc))...),
    tuple((rand(SFourMomentum) for _ in 1:number_outgoing_particles(proc))...),
)
PhaseSpacePoint:
    process: QEDbase.Mocks.MockProcessSP{Tuple{Electron, Photon}, Tuple{Electron, Electron, Electron, Positron, Positron}, Tuple{SpinUp, PolarizationX}, NTuple{5, SpinUp}}((electron, photon), (electron, electron, electron, positron, positron), (spin up, x-polarized), (spin up, spin up, spin up, spin up, spin up))
    model: mock model
    phase space layout: FlatPhaseSpaceLayout{TwoBodyTargetSystem{Energy{2}}}(TwoBodyTargetSystem{Energy{2}}(Energy{2}()))
    incoming particles:
     -> incoming electron: [0.7740897867575416, 0.9293729285218794, 0.9967238243594605, 0.7036530777336079]
     -> incoming photon: [0.45760937912437394, 0.347065536895269, 0.2110179652279922, 0.20234230948404974]
    outgoing particles:
     -> outgoing electron: [0.7383123720678346, 0.045272137275012114, 0.7272284690523372, 0.8338976529670923]
     -> outgoing electron: [0.20648173999788522, 0.13814535893038593, 0.8699951573559375, 0.5069829027692087]
     -> outgoing electron: [0.5677237285013014, 0.9692834885838589, 0.48246408885224834, 0.13538733845944184]
     -> outgoing positron: [0.9413433572579362, 0.132654584001483, 0.960447993344274, 0.4661077529857044]
     -> outgoing positron: [0.46940197541323037, 0.6354787944436487, 0.11918520767377183, 0.9545363441181034]

With the DAG, the process, RuntimeGeneratedFunctions initialized, and an input type to use we can now generate the actual computable function:

func = get_compute_function(
    dag, proc, cpu_st(), @__MODULE__; concrete_input_type = typeof(psp)
);

Finally, we can test that the function actually runs and computes something by simply calling it on the PhaseSpacePoint:

func(psp)
0.0012717129269879989

We can benchmark the execution speed too:

using BenchmarkTools
@benchmark func($psp)
BenchmarkTools.Trial: 10000 samples with 1 evaluation per sample.
 Range (minmax):  18.845 μs84.819 μs   GC (min … max): 0.00% … 0.00%
 Time  (median):     19.036 μs               GC (median):    0.00%
 Time  (mean ± σ):   19.433 μs ±  2.015 μs   GC (mean ± σ):  0.00% ± 0.00%

  ▇          ▁▁▁                                           ▁
  ███▇▇▄▆▆▆▅▆▆████▇▆▅▄▃▄▅▄▄▄▃▅▄▄▃▄▅▅▆▁▅▄▆▆▅▅▅▅▄▄▄▃▁▁▃▅▅▆███ █
  18.8 μs      Histogram: log(frequency) by time        28 μs <

 Memory estimate: 256 bytes, allocs estimate: 2.

This page was generated using Literate.jl.